- algebraic hypersurface
- мат.алгебраическая гиперповерхность
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Hypersurface — For differential geometry usage, see glossary of differential geometry and topology. In geometry, a hypersurface is a generalization of the concept of hyperplane. Suppose an enveloping manifold M has n dimensions; then any submanifold of M of n − … Wikipedia
Coble hypersurface — In algebraic geometry, a Coble hypersurface is one of the hypersurfaces associated to the Jacobian variety of a curve of genus 2 or 3 by Arthur Coble. There are two similar but different types of Coble hypersurfaces. The Kummer variety of the… … Wikipedia
List of algebraic geometry topics — This is a list of algebraic geometry topics, by Wikipedia page. Contents 1 Classical topics in projective geometry 2 Algebraic curves 3 Algebraic surfaces 4 … Wikipedia
Adjunction formula (algebraic geometry) — In mathematics, the adjunction formula of algebraic geometry and complex manifold theory relates, for a hypersurface, its normal bundle, its canonical bundle, and the canonical bundle of the ambient variety or manifold.Let H be a hypersurface in… … Wikipedia
Singular point of an algebraic variety — In mathematics, a singular point of an algebraic variety V is a point P that is special (so, singular), in the geometric sense that V is not locally flat there. In the case of an algebraic curve, a plane curve that has a double point, such as the … Wikipedia
Degree of an algebraic variety — The degree of an algebraic variety in mathematics is defined, for a projective variety V, by an elementary use of intersection theory. For V embedded in a projective space Pn and defined over some algebraically closed field K, the degree d of V… … Wikipedia
Dual curve — Curves, dual to each other; see below for properties. In projective geometry, a dual curve of a given plane curve C is a curve in the dual projective plane consisting of the set of lines tangent to C. There is a map from a curve to its dual,… … Wikipedia
Complete intersection — In mathematics, an algebraic variety V in projective space is a complete intersection if it can be defined by the vanishing of the number of homogeneous polynomials indicated by its codimension. That is, if the dimension of an algebraic variety V … Wikipedia
Tropical geometry — is a relatively new area in mathematics, which might loosely be described as a piece wise linear or skeletonized version of algebraic geometry. Its leading ideas had appeared in different guises in previous works of George M. Bergman and of… … Wikipedia
Stereographic projection — In geometry, the stereographic projection is a particular mapping (function) that projects a sphere onto a plane. The projection is defined on the entire sphere, except at one point mdash; the projection point. Where it is defined, the mapping is … Wikipedia
Enriques–Kodaira classification — In mathematics, the Enriques–Kodaira classification is a classification of compact complex surfaces into ten classes. For each of these classes, the surfaces in the class can be parametrized by a moduli space. For most of the classes the moduli… … Wikipedia